Геометрический S(AMB)=1/2MA·MB·sin(AMB)=(√3/4)MA·MB, т.к. ∠AMB=∠ACB=60°. Отсюда MA·MB=4S(AMB)/√3 и аналогично из площадей треугольников AMC и СМВ получим MA·MC=4S(AMC)/√3, MC·MB=4S(СMВ)/√3. По теореме косинусов для тех же треугольников: AB²=MA²+MB²-MA·MB=MA²+MB²-(4/√3)·S(AMB); AС²=MA²+MС²+MA·MС=MA²+MС²-(4/√3)·S(AMС); СB²=MС²+MB²-MС·MB=MС²+MB²-(4/√3)·S(СMB). Сложим эти равенства: AB²+AС²+СB²=2(MA²+MB²+MС²)-(4/√3)·(S(AMB)-S(AMС)+S(СMB)). Но AB=AС=СB=√3, и значит AB²+AС²+СB²=3+3+3=9, S(AMB)+S(СMB)-S(AMС)=S(ABC)=(3√3)/4. Поэтому 9=2(MA²+MB²+MС²)-(4/√3)·(3√3)/4, т.е. MA²+MB²+MС²=(9+3)/2=6.
Тригонометрический Если R - радиус, О - центр окружности и ∠AOM=2x, то MА=2Rsin(x), MB=2Rsin(60°+x), MC=2Rsin(60°-x). Значит MA²+MB²+MС²=4R²(sin²(x)+sin²(60°+x)+sin²(60°-x)). После раскрытия синусов суммы и упрощения получим 6R², что и требовалось.
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
ответ:Это же елементарщина
Объяснение:
Но мне лень думать)