ПИрамида АВСДА1В1С1Д1, в основаниях квадраты со сторонами АВ=4, А1В1=1, О1О=1 -высота пирамиды, из точки О1 проводим перпендикуляр О1К1 на С1Д1, О1К1=1/2А1Д1=0,5, из точки О препендикуляр ОК на СД, ОК=1/2АВ=4/2=2, рассматриваем прямоугольную трапецию ОО1К1К, проводим высотуК1Т на ОК, ОО1К1Т прямоугольник О1К1=ОТ=0,5, ТК=ОК-ОТ=2-0,5=1,5= 3/2, О1О=К1Т=1, треугольник К1ТК прямоугольный, К1К=корень(ТК в квадрате+К1Т в квадрате)=корень(9/4+1)=1/2*корень13, рассматриваем равнобедренную трапецию ДД1С1С площадь ее=(ДС+Д1С1)*К1К/2= (4+1)*1/2*корень13/2=5*корень13/4, площадь боковой повехности=5*корень13/4 *4=5*корень13, площадь АВСД=АД в квадрате=4*4=16, площадьА1В1С1Д1=А1Д1 в квадрате=1*1=1, поверхность полная=16+1=5*корень3=17+5*корень3
Если построить на стороне ВС, как на диаметре, окружность, и провести касательную к ней параллельно ВС, то все точки этой касательной будут лежать на одинаковом расстоянии от прямой ВС (от всей прямой, не только отрезка, но и продолжения), равном половине ВС. Поэтому эта касательная - это геометрическое место возможных вершин А. Ясно, все точки этой прямой, за исключением точки касания, лежат за пределами окружности. Легко показать, что если вершина А не совпадает с точкой касания, то угол А меньше прямого. Для этого достаточно соединить точку С с точкой пересечения окружности и АВ, пусть это точка Е, при этом получится прямой угол ВЕС, и заметить, что этот прямой угол равен сумме угла А и угла АВЕ, не равного 0. Поэтому максимальное значение угла А равно 90 градусам, когда точка А - это касательная к этой окружности. Треугольник ВСА при этом равнобедренный.