М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Filipok220
Filipok220
24.03.2021 05:10 •  Геометрия

Постройте три отрезка. Постройте треугольник со сторонами, равными этим отрезкам.​

👇
Ответ:
M5063
M5063
24.03.2021

это легко

Объяснение:

Строишь 3 отрезка например по 5 см каждый!

Далее из этих отрезков строишь треугольник!

а 5см. б 5см. ц 5 см.

4,6(100 оценок)
Открыть все ответы
Ответ:
katyakantalins
katyakantalins
24.03.2021
Отрезки касательных  к окружности,  проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту  точку  и центр окружности.(теорема) dа и dс - отрезки касательных, проведенных к большей окружности из  точки d. => da=dc. dв и dс - отрезки касательных, проведенных к меньшей окружности из  точки d.=>   db=dc.    два отрезка, равные третьему, равны между собой. => аd=bd ad: bd=1: 1 из чего следует   аd: ab=1/2 и т.d  середина ав.
4,4(20 оценок)
Ответ:
сабина422
сабина422
24.03.2021

Шар вписан в конус. найти наименьший объём конуса, если радиус шара равен 1.

Решение.

1) Рассмотрим осевое сечение данной комбинации тел : равнобедренный ΔАВС , высота ВН ,  точка О-центр вписанной окружности. К-точка касания окружности со стороной АВ. По условию ОН=ОК=1 ед.

Пусть ВН=h  , AH=R.  Vкон=1/3*Sосн*h  ,  Sосн=π*R²

Выразим объём  через высоту конуса.

Отрезок ВО=ВН-ОН=h-1

По т. Пифагора  , ΔABH ,  АВ²=АН²+ВН²=R²+h² .

2) ΔКВО~ ΔHBA  по двум углам(∠В-общий,∠ВКО=АНВ=90° тк радиус перпендикулярен касательной , проведенной в точку касания).

Значит КО:АН=ВО:АВ или 1:R=(h-1): √(R²+h²) ⇒ R²=\displaystyle \frac{h^{2} }{(h-1)^{2} -1 } .

3) V(h)=  \displaystyle \frac{1}{3} *\pi *\frac{h^{2} }{(h-1)^{2}-1 }*h =  \displaystyle \frac{\pi }{3} *\frac{h^{3} }{h^{2}-2h }  = \displaystyle \frac{ \pi *h^{3} }{3h^{2}-6h } .

V' = \displaystyle \frac{3 \pi h^{2}*( 3h^{2}-6h)-\pi h^{3}*(2h-2) }{(3h^{2}-6h)^{2} }=\\

  =\displaystyle \frac{3 \pi h^{3}*(h-4) }{(3h^{2}-6h)^{2} }   , V'=0,   при  h=4 .

V'  _  _  _  _(4) +  +  +  +  

V       ↓                    ↑  ,         значит  h=4  точка минимума. Наименьший объём достигается  в точке минимума .

V  = \displaystyle \frac{ \pi *4^{3} }{3*4^{2}-6*4 }  ⇒  V=\displaystyle \frac{8\pi }{3} ед³ .


Шар вписан в конус. найти наименьший объём конуса, если радиус шара равен 1
4,6(31 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ