Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
Треугольник ABD тоже равнобедренный, AD = BD =12; (то есть у треугольника ABD известны все три стороны AB = 18;) С ходу в голову приходит воспользоваться теоремой косинусов, и тем, что углы ADB и CDB - дополнительные. Если (для максимальной краткости записи) обозначить 2*cos(Ф) = z; где Ф - это угол CDB; и DC = x; то 12^2 + 12^2 + 12*12*z = 18^2; 12^2 + x^2 - 12*x*z = 18^2; откуда конечно можно найти x = DC; дальше техника. Вместо того, чтобы находить из первого уравнения z и подставлять во второе, можно заметить, что x^2 - 12*x*z = 12^2 + 12*12*z; или x^2 - 12^2 = 12*(x + 12)*z; 12*z = x - 12; если это подставить в первое уравнение, получится 12^2 + 12^2 + 12*(x - 12) = 18^2 = 12*27; 12 + 12 + x - 12 = 27; x = 15;
Все это хорошо, но есть совсем элементарное решение. Очевидно, что треугольники ABD и ABC подобны - это равнобедренные треугольники с одинаковыми углами при основаниях. Треугольник ABD подобен треугольнику (2,2,3) с коэффициентом 6, то есть (12,12,18); а треугольник ABC имеет боковую сторону 18, то есть коэффицент подобия 9 с тем же треугольником (2,2,3) то есть его основание AC = 27; откуда DC = 15;
S полн = 72 см².
Объяснение:
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
СС1 = √(AС1² + АC²) = √(49 + 45) = 2 см.
Sabcd = 6·3 = 18 см². Sdd1c1c = 3·2 = 6см². Saa1d1d = 6·2 = 12см².
тогда Sполн = 2·Sabcd + 2·Sdd1с1с +2·Saa1d1d или
Sполн = 2·18 + 2·6 +2·12 = 36 + 12 +24 = 72 см².