Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
S=28;.
S=24.
Объяснение:
1). S= a*b
a=4 <45 катеты равны
b=4+3=7
S=4*7=28
2). S= a*b*[email protected],. a=6; b=8;. @=150;
S=6*8*sin150= 48*1/2=24