В 1) задаче смотри рисунок...проводим две высоты к большому основанию они отсекут два отрезка (эти отрезки маленькие называются полуразность оснований) то есть они равны каждый (49-15)/2=34/2=17 видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34 периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда (2х+3х)/2=5 5х=10 х=2 2*2=4 меньшее основание 3*2=6 большее
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см