Один з катетів прямокутного трикутника на 2 см менший за гіпотенузу і на 14 см більший за другий катет. Знайдіть сторони трикутника, якщо радіус вписаного кола дорівнює 4 см.
Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. Найти сторону треугольника.
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
∠CAD=∠AEB=α (первый угол между касательной и хордой, второй вписанный); ∠BAE=∠ACB=β по тем же причинам ⇒ΔABC подобен ΔEBA. Пусть коэффициент подобия равен k, тогда площади треугольников относятся как k^2, а поскольку площадь 4-угольника ACBE, состоящего из этих треугольников, относится к площади первого как 5 к 1, то площадь второго относится к площади первого как 4 к 1, а тогда коэффициент подобия равен 2 ⇒AB:BC=2:1
Второй вопрос корректен при условии, что речь идет о векторах. Так и будем считать. Поскольку по доказанному AB:BC=2:1 (сейчас мы их рассматриваем как стороны первого Δ), стороны второго относятся так же, BE:AB=2:1. Поскольку биссектриса делит сторону на отрезки, пропорциональные боковым сторонам, ED/DA=2/1.
Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. Найти сторону треугольника.
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
радиус ОН=а√2):2=a/√2
Стороны описанного треугольника АВС=а+√6
Радиус ОН вписанной в него окружности =ВН/3
ВН=АВ*sin 60º=√3*(а+√6):2
OH=√3*(а+√6):6
Приравняем оба значения ОН:
a/√2=√3*(а+√6):6 из чего следует
а=(а+√6):√6⇒
a=√6:(√6-1)
АВ=[√6:(√6-1)]+√6
АВ=(√6+6-√6):(√6-1)=6:(√6-1)