Ромб АВСД (АВ=ВС=СД=АД=6, <А=<С=120°, тогда <В=<Д=180-120=60°) Из точки Н, которая делит одну из сторон ромба АВ в отношении АН/НВ=2/1, восстановлен перпендикуляр ЕН=4 к плоскости ромба. Найти расстояние ЕК от другого конца перпендикуляра Е до большей диагонали ромба ВД (большая сторона против большего угла). АН=2х, НВ=х, тогда АВ=3х, откуда х=АВ/3=6/3=2 Значит АН=4, НВ=2 Из прямоугольного ΔВКН, в котором <НВК=30° (диагонали ромба являются биссектрисами угла), найдем НК: НК=НВ/2=2/2=1 (катет против угла в 30° равен половине гипотенузы). Из прямоугольного ΔЕНК: ЕК=√(ЕН²+НК²)=√(16+1)=√17
В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон. В нашем случае Сумма боковых сторон равна 36+1=37см, значит боковая сторона = 18,5см (трапеция равнобокая). Проведем высоту из тупого угла трапеции. В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований. Полуразность равна (36-1)/2=17,5см. В прямоугольном треугольнике, образованном высотой (катет), боковой стороной трапеции (гипотенуза) и полуразность оснований (второй катет) по Пифагору находим высоту трапеции: h=√(18,5²-17,5²) = √(1*36) = 6см. Но высота трапеции равна диаметру вписанного круга. Значит его радиус равен 3. ответ: радиус равен 3см.
Из точки Н, которая делит одну из сторон ромба АВ в отношении АН/НВ=2/1,
восстановлен перпендикуляр ЕН=4 к плоскости ромба.
Найти расстояние ЕК от другого конца перпендикуляра Е до большей диагонали ромба ВД (большая сторона против большего угла).
АН=2х, НВ=х, тогда АВ=3х, откуда х=АВ/3=6/3=2
Значит АН=4, НВ=2
Из прямоугольного ΔВКН, в котором <НВК=30° (диагонали ромба являются биссектрисами угла), найдем НК:
НК=НВ/2=2/2=1 (катет против угла в 30° равен половине гипотенузы).
Из прямоугольного ΔЕНК:
ЕК=√(ЕН²+НК²)=√(16+1)=√17