Диагональ параллелепипеда проектируется на диагональ квадрата в основании, равную 2 (раз сторона корень из 2).
Вместе с высотой параллелепипеда эти диагонали образуют прямоугольный треугольник.
Поэтому D^2 - H^2 = 2^2; D - диагональ параллелепипеда, Н - ВЫСОТА (боковая сторона параллелепипеда)
Диагональ параллелепипеда проектируется на диагональ Db любой боковой грани, у этой боковой грани одна сторона Н, другая КОРЕНЬ(2); то есть она равна
Db = корень(H^2 + 2);
Задан угол между боковой гранью и диагональю D, то есть угол между D и Db, то есть
Db/D = cos(30) = корень(3)/2; Db^2 = D^2*3/4; (H^2 + 2) = 3/4*(4 + H^2);
Очень трудное уравнение :) Н^2 = 4; H = 2;
V = 2*(корень(2))^2 = 4;
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.