Т.к. АС диаметр, то вписанные углы АВС и АDC, которые на него опираются равны 180:2=90град.
Треугольники АВО и ADО равносторонние, их стороны равны радиусу, значит и углы равны 180:3=60град., следовательно углы BAO и DAO равны 60град., т.е. угол BAD равен 60·2=120град. Угол BСD=180-120=60град. (Сумма углов четырёхугольника равна 360град.)
Углы BCA и DCA равны по 30град. (90-60=30 свойство углов прямоугольного треугольника) и являются вписанными в окружность, следовательно дуги на которые они опираются AB и AD равны 30·2=60град.
Дуги BC и CD так же в 2 раза больше вписанных углов BAC и DAC, которые на них опираются, т.е. 60·2=120град.
ответ: Углы четырёхугольника ABCD равны 120; 90; 60; 90 град. Дуги АВ и CD - 60град., дуги BC CD по 120град.
Обозначим углы ромба буквами A;B;C;D
Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник
ABO:
AB=30см
BO=15 см т. к половина диагонали.
И получается прямоугольный треугольник ABO
По теореме пифагора ищим сторону AO
30^2=15^2+x
Считаем и получаем x
Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше.
Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2
удачи)