1) 1 случай: если внешний угол при основании, тогда смежный с ним 180-116=64, второй угол при основании тоже = 64, а угол при вершине=180-64-64=52 2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58. 2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20 2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50
Нам дана окружность, значит известен ее центр. 1. Проведем прямую через центр О окружности и данную точку М на окружности. 2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ. Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.
2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58.
2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20
2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50