М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alievafatima1
alievafatima1
12.03.2023 23:16 •  Геометрия

Средняя линия равнобедренного треугольника, параллельная основанию, равна 3 см. найдите стороны треугольника, если его периметр равен 16 см.

👇
Ответ:
ystefaniv
ystefaniv
12.03.2023
Средняя линия =1/2 основания, основание = средняя линия * 2= 3*2=6
периметр= 2 * боковая сторона + основание
16= 2 * боковая сторона + 6
боковая сторона = (16-6)/2=5
сторона1 = 5
сторона2=5
основание = 6
4,5(12 оценок)
Ответ:
Средняя линия треугольника равна половине основания основание равно 6.Вравнобедренном трегольнике две стороны равны. Две стороны будут равны 16-6=10 одна сторона равна 10:2=5
ответ стороны треугольника равны 6, 5, 5 см
4,7(10 оценок)
Открыть все ответы
Ответ:

6

 

AD=25

AB=15

BAC=DAC

DB и АВ перпендиккулярны

 

Накрест лежащие углы CAD и АСВ равны. Тогда АВС равнобедренный и ВС=15

Треугольники ABH и ABD подобны. Отношение:

АВ:АН=АD:АВ

15:АН=25:15

АН=9

 

Остается найти ВН  по теореме Пифагора:

ВН=корень(15^2-9^2)=12

 

S=(15+25)/2*12=240

 

ответ: 240

 

7

 

Теорема косинусов для треугольника AМC

AC^2=AM^2+MC^2-2*AM*CM*cosAMC

 

Теорема косинусов для треугольника BМC

BC^2=BM^2+MC^2-2*BM*CM*cosBMC

 

AC=BC (треугольник равносторонний) Тогда AC^2=BC^2

 

AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC

AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC

 

АМ и ВM знаем

2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC

4-4*CM*cosAMC=100-20*CM*cosBMC

 

Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.

Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120

 

4-4*CM*cos120=100-20*CM*cos60

4-4*CM*(-1/2)=100-20*CM*1/2

4+2*CM=100-10*CM

12*CM=96

СМ=8

 

ответ: 8

4,5(39 оценок)
Ответ:
Б45
Б45
12.03.2023
Точка О - место пересечения биссектрис треугольника АВС.
Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы. 
Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС,
АО/ОФ=(АВ+АС)/АВ.
Пусть ∠АОВ=∠ДОФ=α.
Запишем формулы нахождения площадей треугольников  АОВ и OФД и сразу разделим их как показано далее по предложенному отношению:
S(ΔАОВ) = 0.5·АО·ВО·sinα 
-------------------------------------- =6:1,
S(ΔOФД) = 0.5·ОД·ОФ·sinα 

(ВО/ОД)·(АО/ОФ)=6,
2АВ·(АВ+АС)/(АВ·АС)=6,
2АВ+2АС=6АС,
АВ=2АС,
Итак, АС/АВ=1/2=1:2 - это ответ.
Правильно и грамотно решить ! ! 50 ! в равнобедренном треугольнике abc (ab=bc) биссектрисы bd и af п
4,4(81 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ