Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Пусть дан вписанный треугольник АВС. Вписанный <ABC=120°. Он равен половине градусной меры дуги, на которую опирается. Значит дуга АС=240°. Тогда дуга АВС=360°-240°=120° Центральный угол АОС=120°, так как равен градусной мере дуги, на которую он опирается. Тогда в равнобедренном треугольнике АОС углы <АСО=<CAO (углы при основании)=(180°-120°):2=30°. Опустим перпендикуляр ОН на хорду АС. По свойству этого перпендикуляра, он делит хорду пополам. В прямоугольном треугольнике АОН против угла 30° лежит катет, равный половине гипотенузы, то есть ОН=(1/2)*R или ОН=3. Тогда АН=√(36-9)=3√3 (по Пифагору). АВ=2*АН или АВ=6√3. Это ответ.