Циліндр, радіус основи якого дорівнює 3 см, а висота 8 см, розрізали площиною, паралельною основам. Утворилися два циліндри. Чому дорівнює їх сумарна площа повних поверхонь? У відповідь запишіть результат від ділення сумарної площі на π.
Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
Рассмотрим треугольник АМВ. Он равнобедренный по условию (ВМ=АМ). Значит, углы при его основании АВ равны. <MBA=<MAB. Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов). Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB. Но <MBA=<MAB как показано выше, значит <MBC=<MAC. Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними: - ВС=АС, т.к. АВС - равносторонний треугольник; - ВМ=АМ по условию; - соответственные углы МВС и МАС равны как показано выше. В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
Объяснение:
ответ на картинке и да это не мое