а) перпендикуляр проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к прямой их пересечения, есть перпендикуляр к другой плоскости.
Верно.
б) Через данную прямую, не перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Неверно. Можно провести единственную плоскость, перпендикулярную данной, так как
в) Через данную прямую, перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Верно.
г) Плоскость и не лежащая в ней прямая, перпендикулярные одной и той же плоскости, параллельны между собой
Вроде придумал решение. Пусть число соединить n точек на окружности равно F(n). Пронумеруем точки на окружности от 0 до n-1. Возьмем точку n-1. Рассмотрим два непересекающихся случая: 1) Она не имеет у себя пары. Тогда число это устроить равно F(n-1) 2) Она имеет себе пару. Теперь происходит выбор кандидатов. Пусть ее пара точка 0. Тогда число это устроить равно F(количество точек между 0 и n-1 в одном направлении) * F(количество точек между 0 и n-1 в другом направлении) = F(0)*F(n-2). То есть мы этим отрезком разбиваем все множество точек на две половины, считаем ответ на каждой половине, а потом по правилу произведения их умножаем. Дальше ее парой может быть точка 1. Поступаем аналогично, здесь будет F(1)*F(n-3), так как в одном направлении лишь точка 0, в другом направлении точки 2,3,..,n-2. Аналогично рассуждаем и доходим до F(n-2)*F(0). Суммируем получившиеся и получаем: F(n) = F(n-1) + F(0)*F(n-2)+F(1)*F(n-3)+..+F(n-3)*F(1)+F(n-2)*F(0). Начальные значения: F(0) = F(1) = 1, F(2) = 2 (мы можем соединять или не соединять две точки) По этим данным можно находить F(3), F(4) и т. д. Для F(3) = F(2) + F(0)*F(1) + F(1)*F(0) = 2 + 1 + 1 = 4. Перечислим эти 1) ничего не связано 2) связаны только 0, 1 3) связаны только 0, 2 4) связаны только 1, 2
а) перпендикуляр проведенный из любой точки одной из двух взаимно перпендикулярных плоскостей к прямой их пересечения, есть перпендикуляр к другой плоскости.
Верно.
б) Через данную прямую, не перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Неверно. Можно провести единственную плоскость, перпендикулярную данной, так как
в) Через данную прямую, перпендикулярную данной плоскости, можно провести бесконечное число плоскостей, перпендикулярных данной.
Верно.
г) Плоскость и не лежащая в ней прямая, перпендикулярные одной и той же плоскости, параллельны между собой
Верно.