1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
Угол,смежный углу, равному 132 градусу будет равен:180-132=48 Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса Значит,один угол при основании равен 132/2=66
1
Объяснение:
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
12 - 11 = 1
ответ: 1