Начерти окружности с данными центрами O и B и данными радиусами: r1 = 18,1 см, r2 = 3,9 см — так, чтобы они имели одну общую точку. Определи расстояние OB. (В первое «окошко» введи большее значение.) OB = см или OB = см
Объём правильной четырёхугольной призмы находится по формуле: V=Sоснования*h У правильной четырёхугольной призмы в основании лежит квадрат, следовательно формула преобразуется в след.вид:
V=a²*h где а - сторона основания
Найдём высоту (h). Для этого найдём диагональ основания (обзову её d для удобства). Она будет являться одним из катетов прямоугольного треугольника. Второй катет - это искомая высота, а гипотенуза - диагональ призмы. Считаем:
V=Sоснования*h
У правильной четырёхугольной призмы в основании лежит квадрат, следовательно формула преобразуется в след.вид:
V=a²*h
где а - сторона основания
Найдём высоту (h).
Для этого найдём диагональ основания (обзову её d для удобства). Она будет являться одним из катетов прямоугольного треугольника. Второй катет - это искомая высота, а гипотенуза - диагональ призмы. Считаем:
d²=a²+a²
d²=8²+8²
d²=128
d=√128
Теперь считаем высоту:
h²=18²-(√128)²
h²=324-128
h²=196
h=√196
h=14
Ну и теперь возвращаемся к формуле объёма:
V=8²*14
V=64*14
V=896
ответ: 896 см³