1) квадрат и треугольник взаимно перпендикулярны, значит, ВС перпендикулярна плоскости треугольника АМВ, следовательно ВС перпендикулярна любой прямой лежащей в плоскости АМВ, а значит, перпендикулярна и АМ.
2)проведём высоту МК в треугольнике АМВ. Так как треугольник равнобедренный, то высота является и медианой, поэтому АК=КВ=4:2=2
из прямоугольного треугольника МКВ МК^2=MB^2-BK^2=(2 корень из6)^2-4=4*6-4=20
из прямоугольного треугольника КВС КС^2=KB^2+BC^2=2^2+4^2=4+16=20
треугольник МКС равнобедренный значит угол КМС=углу МСК, угол МКС=90градусов так как МК перпендикулярна к плоскости квадрата, поэтому угол между МС и плоскостью квадрата равен 90градусов :2=45 градусов
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20