Объяснение: обозначим трапецию АВСД, проведём от двух вершин верхнего основания две высоты и обозначим их ВН и СК. Они делят нижнее основание, так, что в середине нижнего основания получается отрезок равный верхнему основанию трапеции: НК=ВС=3см. Так как трапеция равнобедренная то отрезки АН=КД. Найдём эти отрезки:
АН=КД=(11-3)÷2=8÷2=4см. Рассмотрим полученный ∆АВН. Он прямоугольный где ВН и АН- катеты, а АВ- гипотенуза. Найдём высоту ВН по теореме Пифагора:.ВН²=АВ²-АН²=√(5²-4²)=
=√(25-16)=√9=3. Итак: высота ВН=3см. Площадь трапеции- это полупроизведение его оснований на высоту. Теперь найдём площадь треугольника, зная высоту и основания по формуле: S=(3+11)/2×h=
№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
ответ: 21см²
Объяснение: обозначим трапецию АВСД, проведём от двух вершин верхнего основания две высоты и обозначим их ВН и СК. Они делят нижнее основание, так, что в середине нижнего основания получается отрезок равный верхнему основанию трапеции: НК=ВС=3см. Так как трапеция равнобедренная то отрезки АН=КД. Найдём эти отрезки:
АН=КД=(11-3)÷2=8÷2=4см. Рассмотрим полученный ∆АВН. Он прямоугольный где ВН и АН- катеты, а АВ- гипотенуза. Найдём высоту ВН по теореме Пифагора:.ВН²=АВ²-АН²=√(5²-4²)=
=√(25-16)=√9=3. Итак: высота ВН=3см. Площадь трапеции- это полупроизведение его оснований на высоту. Теперь найдём площадь треугольника, зная высоту и основания по формуле: S=(3+11)/2×h=
14/2×3=7×3=21см²