Диаметр вписанной окружности равен высоте трапеции. то есть высота равна 8. Площадь трапеции равна произведению средней линии трапеции на высоту, то есть 10*8 = 80.
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB. Найдём угол BAC: BAC = 180° - (30° + 105°) = 180° - 135° = 45° По теореме синусов найдём сторону AC: (BC)/(sinBAC) = (AC)/(sinABC); (3√2)/(√2/2) = (AC)/(1/2); AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см По той же теореме синусов найдём сторону AB: (AC)/(sinABC) = (AB)/(sinBCA); sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191 (3)/(1/2) = (AB)/(1.6191); AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Вариант 1. Уровень А. 1. в) Одну. 2. а) MN = KN 3. в) В - середина АD 4. б) N∈MK 5. б) ∠АОМ = ∠РОА 6. а) 48° и 132° 7. в) (рисунок во вложении) 8. б) прямой 9. б) Если биссектрисы двух углов перпендикулярны, то эти углы смежные.
Уровень В. 1. 180° - 113° = 67° 2. 12,3 - 5,7 = 6,6 см 3. 6,1 : 2 = 3,05 см 4. (140° - 20°) : 2 = 60° 5. 24 : 2 = 12 см 6. 180° - (56° : 2) = 180° - 28° = 152°
Вариант 2. Уровень А. 1. в) Одну 2. в) 2 АВ = МВ 3. в) B – середина АD 4. а) С∈АВ 5. в) ∠ АОМ = ∠ КOМ 6. в) 93° и 77° 7. в) (рисунок во вложении) 8. а) острый 9. б) Если углы прямые, то они смежные
Уровень В. 1. 180° - 132° = 48° 2. 5,2 - 3,6 = 1,6 см 3. 2,8 · 2 = 5,6 см 4. 120° : 6 = 20° 5. 12 : 2 = 6 см 6. (180° - 124°) · 2 = 56° · 2 = 112°
Площадь трапеции равна произведению средней линии трапеции на высоту, то есть 10*8 = 80.