Так как ∠А=∠А1 ( по условию), то треугольник АВС можно наложить на треугольник А1В1С1, так что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ = А1В1, АС = А1С1, то сторона АВ совместится со стороной А1В1, а сторона - АС состороной А1С1; в частности совместятся точки В и В1, С и С1. Следовательно, совместятся стороны ВС и В1С1. Итак, ∆АВС и ∆А1В1С1 полностью совместятся, значит они равны. как то такв середине треугольник не нужен
Высота боковой грани пирамиды равна корню квадратному из суммы квадратов высоты пирамиды и квадрата половины длины стороны основания или √((10:2)²+12²)=√√169=13 (дм) площадь каждой из боковых граней: 13*10/2=65(дм²) площадь боковой поверхности пирамиды: 130*4=260 (дм²) площадь боковой поверхности пирамиды и основания: 260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани 360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
Дано:
∠A=∠A1
AB=A1B1
AC=A1C1
Доказать:
ΔABC=ΔA1B1C1
Доказательство:
Так как ∠А=∠А1 ( по условию), то треугольник АВС можно наложить на треугольник А1В1С1, так что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ = А1В1, АС = А1С1, то сторона АВ совместится со стороной А1В1, а сторона - АС состороной А1С1; в частности совместятся точки В и В1, С и С1. Следовательно, совместятся стороны ВС и В1С1. Итак, ∆АВС и ∆А1В1С1 полностью совместятся, значит они равны. как то такв середине треугольник не нужен