Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
А) 1. Дан отрезок АВ. Начертим луч с началом в точке А под произвольным углом к отрезку. 2. С циркуля отложим на луче от точки А последовательно (2 + 5 = 7) 7 равных отрезков произвольной длины. Конец последнего отрезка обозначим С. Соединим точки С и В. Через все точки - концы равных отрезков на луче - проведем прямые, параллельные прямой ВС. По теореме Фалеса, они отсекут на отрезке АВ равные отрезки. 3. Отсчитаем 2 из них, отметим точку К. АК : КВ = 2 : 5
Задачи б) и в) решаются аналогично с таким отличием: б) 2. на луче надо откладывать 10 равных отрезков (3 + 7 = 10); 3. От точки А отсчитать 3 отрезка и поставить точку К.
в) 2. на луче надо откладывать 7 равных отрезков (4 + 3 = 7); 3. От точки А отсчитать 4 отрезка и поставить точку К.