Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)
ответ:Сторона квадрату дорівнює 4см, а сторона рівновеликого йому прямокутника – 8см. Знайти другу сторону прямокутника.=35
Знайти площу ромба, сторона якого дорівнює 2√2 см, а один з його кутів дорівнює 45˚.=2,7
В прямокутному трикутнику висота, що проведена до гіпотенузи, ділить її
а відрізки 16см і 9см. Обчисліть площу трикутника.=8,14
В паралелограмі бісектриса гострого кута, який дорівнює 60˚, ділить сторону на відрізки 33см і 55см, починаючи від вершини тупого кута. Знайти площу і периметр паралелограму=7,4
Точка дотику кола, вписаного в рівнобічну трапецію, ділить бічну сторону у відношенні 9:4. Обчисліть периметр і площу трапеції, якщо довжина вписаного в неї кола дорівнює 24π см=0,7