ответ:Оба треугольника равнобедренные,т к АС=DB и точка О делит их пополам,т е
АО=О-В;DO=OC
Углы при основании равнобедренных треугольников равны между собой
<D=<C=60 градусов
Угол при вершине равен
<DOC=180-60•2=60 градусов
Как оказалось,все углы треугольника DOC равны по 60 градусов,значит треугольник даже не равнобедренный,а равносторонний
Треугольники DOC и АОВ равны между собой по первому признаку равенства треугольников
АО=ОС;ОB =ОD; по условию задачи
<DOC=<AOB,как вертикальные
Равенство треугольников доказано,поэтому все углы треугольника АОВ равны по 60 градусов
<ВАО=60 градусов
Объяснение:
Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°