Впрямоугольном треугольнике высота, проведенная к гипотенузе, делит прямой угол на два угла, один из которых равен 56. найдите меньший угол данного треугольника.
Дан треугольник АБС. Угол А=90 градусов. БС-гипотенуза. Провели высоту АД к гип. БС. Угол ДАС=56, значит угол ДАБ=34 градусам.Из прямоугольного треугольника БАД следует, что угол АБД=56.Из прямоугольного треугольника САД следует, что угол АСД=34.ответ: Угол ДАБ= углу АСД=34 градуса.
Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D. По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1). Следовательно, АН=√(3+(2/4)) = √14/2. ответ: √14/2.
Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D. По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1). Следовательно, АН=√(3+(2/4)) = √14/2. ответ: √14/2.