Плошадь диагонального сечения параллелепида равна формуле: S= d×H
d- диагональ (ее вычислил через Пифагора, на рисунке думаю видно ясно).
В условии дано, что площадь д.сечения равна 200.
Вставляем наши значения в формулу:
200= 20×H
H= 200÷20= 10
ответ 31-го номера: H=10 cm.
Номер 30. (надеюсь верно его понял)
Боковое ребро в 30-ом номере вышло 26 см.
Поясню! Сперва я нашел диагональ через Пифагора (ответ вышел 26).
Потом провел большую диагональ к основанию с 45°. Таким образом две стороны по 45° равны между собой. Значит малая диагональ в 26 см, равен стороне (H).
Вариант решения В параллелограмме две пары равных сторон. Пусть каждая сторона одной пары рвана х, тогда каждая сторона другой пары равна х+4 Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. D²+d²=2a²+2b² Запишем уравнение по данным в условии значениям: 14²+12²=2х²+ 2(х+4)² 196+144=2х²+2х²+16х+32 4х²+16х-308=0 Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение: х²+4х-77=0 D=b²-4ac=4²-4·(-77)=324 х₁=(-4+√324):2=7см х₂=(-4-√324):2=-11 ( не подходит) Стороны одной пары равны по 7 см Стороны другой пары равны по 11 см каждая Р=2*(7+11)=36см
Номер 31. (думаю через время дополню и 30-ое).
Плошадь диагонального сечения параллелепида равна формуле: S= d×H
d- диагональ (ее вычислил через Пифагора, на рисунке думаю видно ясно).
В условии дано, что площадь д.сечения равна 200.
Вставляем наши значения в формулу:
200= 20×H
H= 200÷20= 10
ответ 31-го номера: H=10 cm.
Номер 30. (надеюсь верно его понял)
Боковое ребро в 30-ом номере вышло 26 см.
Поясню! Сперва я нашел диагональ через Пифагора (ответ вышел 26).
Потом провел большую диагональ к основанию с 45°. Таким образом две стороны по 45° равны между собой. Значит малая диагональ в 26 см, равен стороне (H).