Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.