1. Две прямые касаются окружности с центром Ов точках А и Ви пересекаются в точке с. Найдите угол между этими прямыми, если BAB0-500 2. Из центра окружности ок хорде AB, равной 50 см, проведен перпендикуляр оС. Найдите длину перпендикуляра, если XOAB=45°. 3. а) Постройте треугольник ABC по трем сторонам. b) Постройте биссектрису угла А ■●■●■
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см