Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
2. Так как известно, что KL перпендикулярно АВ, то углы ALK и BLK равны 90 градусам. Также нас даны равные углы в условии AKL и BKL, а сторона KL - общая, следовательно, треугольники равны по двум углам и стороне между ними (второй признак равенства треугольников).
3. Периметр треугольника =a+b+c a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других Для первого случая: пусть a=15, тогда 15+b+c=28 b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда 14+b+c=28 b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда 13+b+c=28 b+c=15 > a, следовательно ДА
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.