М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
keksukYT
keksukYT
26.07.2021 20:48 •  Геометрия

В якому із випадків неможливо побудувати прямокутний трикутник

👇
Открыть все ответы
Ответ:

 В окружность вписан квадрат со стороной 9 корней из 2 см. Найдите сторону правильного треугольника, описанного около этой окружности.

ответ:18√3 (см)

Объяснение:

 Диаметром окружности, описанной около квадрата, является его диагональ. Точкой пересечения диагоналей квадрат делится на 4 равнобедренных прямоугольных треугольника, гипотенузы которых - стороны квадрата, а острые углы 45°. => r=9√2•sin45°=9

Центры окружностей, вписанных и описанных около правильного треугольника, совпадают ( это точка пересечения биссектрис, которые в то же время являются его срединными перпендикулярами).  

  Радиус вписанной в правильный треугольник окружности находят по формуле r=a:2√3 , где а - сторона правильного треугольника. =>

a=r•2√3  

a=9•2√3=18√3 (см)

4,7(44 оценок)
Ответ:
xFørŻe
xFørŻe
26.07.2021
Треугольник ABC равнобедренный, AC-AB=1, P=16. Возможно две ситуации:
1) BC=AB
2) BC=AC
Рассмотрим первую ситуацию.
Пусть AC=x. Тогда AB=x-1, BC=x-1.
Тогда P=x+x-1+x-1=3x-2=16 => x=6
AC=6, AB=6-1=5, BC=5
Проводим высоту BH на AC. Так как AB=BC, то AH=HC=AC/2=3
По теореме Пифагора из треугольника ABH находим BH=√(AB²-AH²)=√(25-9)=4.
Рассмотрим вторую ситуацию. Пусть AC=x, тогда BC=x, AB=x-1.
P=x+x+x-1=3x-1=16 => x=17/3
AC=17/3, BC=17/3, AB=17/3-1=14/3
Из вершины C на сторону AB проводим высоту CD. Так как BC=AC, то BD=AD=AB/2=(14/3)/2=7/3
Зная это, из треугольника ADC можно найти cos∠A=AD/AC=(7/3)/(17/3)=7/17.
Значит, sin∠A=√(1-cos²∠A)=√(1-49/289)=√240/17=4√15/17
Из вершины B опустим высоту BH на AC. Зная AB и sin∠A, из треугольника ABH можно найти BH=AB*sin∠A=(14/3)*4√15/17=56√15/51
ответ: 4 или 56√15/51.
4,8(7 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ