В правильной четырехугольной пирамиде MABCD, все ребра которой равны 1,боковые рёбра - равносторонние треугольники. Их высота - это апофема А. Она равна 1*cos 30° = √3/2. Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД. В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды. d = a√2 = 1*√2 = √2. По теореме косинусов: cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3. Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен: <M = arc cos(1/3) = 1,230959 радиан = 70,52878°.
AB = CD => AB || CD, |AB|=|CD|соеденим точки A и C, B и DПолучился параллелограмм так как у четырехугольника две противоположные стороны равны и параллельны. По св-ву параллелограмма, диагонали паралл. точкой пересеч-я делятся пополам. Тогда так как AD, BC - диагонали, то середины этих отрезков совпадают в точке их пересечения.Обратное утв-ие:Если середины отрезков AD и ВС совпадают, то вектор АВ= вектору СDДок-во: Достроим до 4-угольника ABCD, AD, BC-диагонали. Тогда У четырехугольника диагонали точкой пересечения делятся пополам. Следовательно это параллелограмм.Тогда AB = CD так как их длины равны, как противоположные стороны параллелограмма, и направлены они параллельно в одну сторону.
Их высота - это апофема А.
Она равна 1*cos 30° = √3/2.
Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД.
В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды.
d = a√2 = 1*√2 = √2.
По теореме косинусов:
cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3.
Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен:
<M = arc cos(1/3) = 1,230959 радиан = 70,52878°.