На плоскости даны точки А(х1,у1), В(х2,у2), С(х3,у3) . Сделать чертеж треугольника и найти: а) длину и уравнение ребра ВС (записать общее, каноническое, параметрические уравнения, а также уравнения в отрезках и с угловым коэффициентом, если это возможно);
б) косинус угла А;
в) уравнение прямой, проходящей через точку А параллельно стороне ВС;
г) высоту, проведенную к стороне ВС, и ее уравнение;
д) уравнение медианы, проведенной к стороне ВС;
е) координаты центра и радиус описанной окружности;
ж) площадь треугольника;
з) центр тяжести треугольника.
Координаты точек А, В, С : x1=6 y1=-6 х2=-2 y2=9 x3=-2 y3=0
Сумма всех углов параллелограмма равна 360°.
АВСД - параллелограмм, ∠А=∠С, ∠В=∠Д
∠А+∠В+∠С+∠Д=360°
Рассмотрим условие
а)сумма двух его противоположных углов равна 94 градуса.
То есть ∠А+∠С=94°
а поскольку ∠А=∠С, значит ∠А=∠С=94°/2=47°.
∠А+∠В+∠С+∠Д=360° и ∠В=∠Д, значит
47°+∠В+47°+∠Д=360°
∠В+∠Д=360°-94°
2∠В=266°
∠В=∠Д=266°/2
∠В=∠Д=133°
ответ: при условии а) ∠А=∠С=47° и ∠В=∠Д=133°.
Рассмотрим условие
б)разность двух из них равна 70 градусов
Поскольку противоположные углы равны у параллелограмма, значит
разность противоположных углов равна 0°.
Выходит, что 70° это разность между двумя соседними углами, то есть
∠В-∠А=70°.
Допустим, что ∠А=Х°, значит
∠А=∠С=Х°
∠В=∠Д=Х°+70°
∠А+∠В+∠С+∠Д=360°
х+(х+70)+х+(х+70)=360°
4х+140°=360°
4х=220°
х=220°/4
х=55°
То есть ∠А=∠С=Х°=55°
∠В=∠Д=Х°+70°=55°+70°=125°
ответ: при условии б) ∠А=∠С=55° и ∠В=∠Д=125°