Опустим высоты BH1 и CH2, BH1∩CH2=O, BH1=h1, CH2=h2. Тогда ∠AH1B=∠OH1C=∠CH2A=∠OH2B=90°.
Рассмотрим ΔAH2C. ∠H2СA=180°-90°-45°=45°=∠A(по условию)=> ΔAH2C равнобедренный => AH2=CH2=h2.
Рассмотрим ΔAH1B. ∠H1BA=180°-90°-45°=45°=∠A(по условию)=> ΔAH1B равнобедренный => AH1=BH1=h1.
Рассмотрим четырехугольник AH2OH1. ∠H2OH1=360°-90°-90°-45°=135°. => ∠BOH2=∠COH1=180°-135°=45°.
Рассмотрим ΔBH2O. ∠H2BO=180°-90°-45°=45°=∠BOH2(по доказанному ранее)=> ΔBH2O равнобедренный => BH2=OH2=a.
Рассмотрим ΔCH1O. ∠H1CO=180°-90°-45°=45°=∠COH1(по доказанному ранее)=> ΔCH1O равнобедренный => CH1=OH1=b.
BH1=h1=b+√(BH2²+OH2²)=a√2+b
CH2=h2=a+√(CH1²+OH1²)=a+b√2
Рассмотрим ΔBOC. По неравенству треугольника BC<BO+OC=√(BH2²+OH2²)+√(CH1²+OH1²)=a√2+b√2
Тогда P=AB+BC+AC=h2+a+h1+b+AC<h2+a+h1+b+a√2+b√2=h2+h1+(a+b√2)+(a√2+b)=h1+h2+h1+h2=2(h1+h2)
Ч.т.д.
В треугольнике ABC AC= BC, K - точка пересечения биссектрис треугольника, а O - точка, равноудаленная от всех вершин треугольника. Отрезок OK пересекает сторону AB в точке E и точкой пересечения делится пополам. Найдите углы треугольника ABC.
------
Точка К равноудалена от сторон треугольника, поэтому является центром вписанной окружности.
Точка О - равноудалена от вершин треугольника и является центром описанной окружности. Точка К лежит на высоте и медиане к АВ ( на срединном перпендикуляре), точка О лежит на срединном перпендикуляре к АВ, поэтому С, К, Е и О принадлежат одной прямой СО.
Т.к. отрезок КО пересекает АВ, точка О расположена вне треугольника.
Высота и медиана СЕ ⊥ АВ и делит его пополам.
Соединим точки К и О с вершинами А и В.
В получившемся четырехугольнике АКВО отрезки АЕ=ВЕ, КЕ=ОЕ.
Треугольники, на которые КО и АВ делят этот четырехугольник, прямоугольные и равны по двум катетам.
Следовательно, АК=ВК=ВО=АО, и АКВО - ромб. АВ - его диагональ и делит его углы пополам.
Пусть ∠ЕАО=α, тогда ∠КАЕ=α, а, так как АК - биссектриса угла САВ, то ∠САК=∠ЕАК, и ∠САЕ=2α.
∆СОА - равнобедренный ( по условию ОА=ОС=ОВ).
∠ОСА=∠ОАС=3α.
Сумма острых углов прямоугольного треугольника равна 90°.
В ∆ СЕА ∠САЕ+∠АСЕ=5α.
5α=90°, откуда α=90°:5=18°
∠САВ=∠СВА=2•18°=36°
∠АСВ=180°-2•36°=108°.