по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
a/2+a/2+b/2+b/2=a+b
ответ: a+b
1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны.
2) Значит треугольники O₁CO' и O₂AO' подобны (по двум углам), т.е.
CO'/AO'=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD.
3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O' совпадает с O.