a) Равные отрезки по осям - треугольник равносторонний.
b) По разности координат находим длины сторон треугольника.
А(2; 0; 5), В(3; 4; 0), С(2; 4; 0)
Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 1 16 25 42 6,480740698
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 0 1 1
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 0 16 25 41 6,403124237 .
По теореме косинусов находим углы:
Полупериметр р= 6,941932468 .
cos A = 0,98802352 cos B = 0,15430335 cos C = 0
A = 0,15492232 В = 1,415874007 С = 1,570796327 это радианы
8,876395081 81,12360492 90 это градусы.
Треугольник прямоугольный.
Можно было определить и по сумме квадратов сторон:
ВС^2 + AC^2 = AB^2.
Пусть образующая цилиндра равна х, тогда диаметр равен 3х. Площадь осевого сечения равна х*3х, и равна 108 кв. см.
х*3х=108
3х^2=108
x^2=108/3
x^2=36
x=√36
x(1)=-6
x(2)=6
Так как образующая не может быть меньше 0, то она равна 6 см.
Диаметр основания равен 6*3=18 см. Радиус основания равен 18/2=9 см
Высота цилиндра равна образующей h=6
формула полной площади цилиндра: S= 2 π rh+ 2 π r2= 2 π r(h+ r)
S=2*3.14+9*(6+9)= 847,8 кв.см.