552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.