Объяснение:
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
1) р=(17+65+80):2=81
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/80 * √(81*64*16*1) = 1/40 * √82944 = 1/40 * 288 = 7,2
2) р=(8+6+4):2=9
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/8 * √(9*1*3*5) = 1/4 * √135 = 1/4 * 3√15= 0,75√15
3) р=(24+25+7):2=28
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/25 * √(28*4*3*21) = 2/25 * √7056 = 2/25 * 84 = 6,72
4) ) р=(30+34+16):2=40
Наименьшая высота падает на наибольшую сторону, поэтому
h = 2/34 * √(40*10*6*24) = 1/17 * √57600 = 1/17 * 240 = 1 17/70.
2. По свойствам биссектрисы следует, что она делит углы треугольника пополам, то есть AH делит угол BAC на равные углы BAH = HAC = 20°, а биссектриса CE делит угол BCA на равные углы BCE = ECA = 25°;
3. Рассмотрим треугольник AOC: сумма углов треугольника 180°, тогда угол О = 180° - (HAC + ECA) = 180-45=135°;
4. Найдём больший угол АОС, который равняется 360°-меньший угол АОС = 360-135 = 235°;
5. Рассмотрим четырёхугольник АОС. Сумма углов четырехугольника равна 360°, угол BAH = 20°, угол ECB = 25°, тогда угол ABC = 360°-(ECB+BAH+AOC) = 360°-(45°+235°)= 80°;
ответ: угол ABC = 80°.