Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
1) Если параллелограмм можно вписать в окружность, то он квадрат.
Утверждение неверное.
Если четырёхугольник вписан в окружность, то сумма его противоположных углов, равна 180°. Поскольку противоположные углы параллелограмма равны, то каждый из них равен 90°. Поэтому если параллелограмм можно вписать в окружность, то он может быть прямоугольником или квадратом, то есть не всегда квадрат.
2) Средняя линия треугольника делит его площадь пополам.
Утверждение неверное.
Средняя линия треугольника делит его площадь в отношении 1:3, считая от вершины. (Пусть а-основание, h - высота, опущенная на сторону а. Тогда площадь треугольника S = 0.5 ah. Средняя линия, параллельная стороне а, равна 0,5а, а высота, опущенная из вершины треугольника на среднюю линию, равна 0,5h. Тогда площадь отсекаемого средней линией треугольника равна s = 0.5 · 0.5 a · 0.5h = 0.125ah, то есть s = 0,25 S. Площадь другой отсечённой части, представляющей собой трапецию, равна S - 0.25S = 0.75S.
0,25S : 0.75S = 1:3)
3) Если два угла вписаны в одну окружность и опираются на одну ее хорду, то они равны.
Утверждение неверное.
Если два угла вписаны в одну окружность и опираются на одну хорду, то они равны, если их вершины находятся по одну сторону от хорды, если же их вершины находятся по разные стороны от хорды, и один из углов равен α, то другой угол равен 180° - α.
4) Если в равнобокую трапецию можно вписать окружность, то ее средняя линия равна боковой стороне.
Утверждение верное.
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон его равны между собой.
Пусть боковая сторона трапеции равна а, тогда сумма боковых сторон равна 2а, и сумма оснований равна 2а. А средняя линия равна полусумме оснований. то есть а.