Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
ответ: 76°.
2) В равнобедренном треугольнике углы при основании равны. Сумма градусных мер углов треугольника равна 180°. Значит, угол при вершине равен 180° - 55° - 55° = 70°.
ответ: 70°.
3) Пусть х -- одна часть угла. Тогда угол А = 7х, угол В = 5х, угол С = 6х.
Сумма градусных мер углов треугольника равна 180°.
Тогда:
7х + 5х + 6х = 180
18х = 180
х = 10°
Получаем: угол А = 7*10 = 70°, угол В = 5*10 = 50°, угол С = 6*10 = 60°.
ответ: 70°, 50°, 60°.