Так как площадь параллелограма равна произведению основания на высоту то есть A*H и равно 5, а основание , а именно А, равно 5 то высота равна 5:5=1, высота =1. так как вторая сторона параллелограма равна 2 , а один из катетов прямоугольного треугольника, который составлен высотой и стороной параллелограма, равен 1, из этого по свойству или теореме, не помню, катет лежащий напротив угла в 30 градусов равен половине гипотенузы, следовательно второй угол который у начала высоты равен 90-30=60 ответ:60 градусов
Если необходимо найти периметр прямоугольника, то пользуемся формулой: Р=2(a+b), где а=10, b=12 Р=2(10+12)=44 Если же надо найти площадь треугольника, то проведем диагональ AC, тогда образуются два равных прямоугольных треугольника, две стороны которого нам известны. Рассмотрим треугольник ABC: AB=10, BC=12 AC-? P-? По теореме Пифагора ищем третью сторону, которая является гипотенузой в данном треугольнике. AC=sqrt(100+144)=sqrt244=2sqrt61 В таком случае P=10+12+2sqrt64= 22+2sqrt61. Не уверен, что это верно
так как вторая сторона параллелограма равна 2 , а один из катетов прямоугольного треугольника, который составлен высотой и стороной параллелограма, равен 1, из этого по свойству или теореме, не помню, катет лежащий напротив угла в 30 градусов равен половине гипотенузы, следовательно второй угол который у начала высоты равен 90-30=60
ответ:60 градусов