Два равных равнобедренных треугольника abd (с основанием ad) и bdc (с основанием bc) имеют общую боковую сторону. докажите, что четырехугольник abcd – параллелограмм
В равнобедренных треугольниках углы при основаниях равны. В равных равнобедренных треугольниках равны все элементы. ⇒ В четырехугольнике АВСD противоположные стороны равны как равные стороны равных треугольников, накрестлежащие углы при пересечении сторон ВС и AD и сторон АВ и CD диагональю ВD - равны как равные углы равных треугольников, следовательно, противоположные стороны АВСD равны по условию и параллельны по доказанному. Это- признаки параллелограмма. Доказано.
1) (рис 1) Формулы деления отрезка в данном отношении ∧ (∧-лямда ∧=АМ/МВ=1/2) х(м)=(х(а)+∧х(в))/(∧+1) х(м)=(-2+1/2*4)/1+1/2=(-2+2)/(3/2)=0 у(м)=(у(а)+∧у(в))/(∧+1) у(м)=(5+1/2*(-3))/1+1/2=(5-3/2)/(3/2)=7/2*2/3=7/3 М(0;7/3) 2) Если точка М принадлежит прямой АВ, то возможны 2 варианта: первый рассмотрен под цифрой 1), а второй т.А будет серединой отрезка МВ, тогда х(м) и у(м) можно найти из формул середины отрезка х(а)=х(м)+х(в)/2 -2=(х(м)+4)/2 х(м)=(-2*2)-4=-8 у(а)=у(м)+у(в)/2 5=(у(м)-3)/2 у(м)=5*2+3=13 М(-8;13) 3)(х(м)-х(а))²+(у(м)-у(а))²=100 и (х(м)-х(в))²+(у(м)-у(в))²=100 для удобства заменим х(м) на х, а у(м) на у, получим уравнения (х+2)²+(у-5)²=100 х²+4х+4+у²-10у+25=100 (х-4)²+(у+3)²=100 х²-8х+14+у²+6у+9=100 вычтем уравнения 12х-16у+16=0 3х-4у=-4 у=3/4х+1 подставим в первое уравнение (х+2)²+(3/4х-4)²=100 х²+4х+4+9/16х²-6х+16=100 25/16х²-2х-80=0 Д1=1+25/16*80=1+25*5=126=3√14 х1=(1+3√14)/(25/16)=16(1+3√14)/25 и х2=16(1-3√14)/25 у1=3/4*16*(1+3√14)/25+1=12(1+3√14)/25+1=(37+36√14)/25 у2=3/4*16*(1-3√14)/25+1=(37-36√14)/25
Свойство треугольника: Любая сторона треугольника меньше суммы двух других сторон и больше их разности: ( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным". Пусть основание равно х, тогда каждая боковая сторона 2х Периметр равен 2х+2х+х=5х х=55:5=11 см. ( основание) 11*2=22 см - каждая боковая сторона.
⇒
В четырехугольнике АВСD противоположные стороны равны как равные стороны равных треугольников, накрестлежащие углы при пересечении сторон ВС и AD и сторон АВ и CD диагональю ВD - равны как равные углы равных треугольников, следовательно, противоположные стороны АВСD равны по условию и параллельны по доказанному.
Это- признаки параллелограмма. Доказано.