Центр координат поместим в точку А , ось X в сторону точки F , ось Y в сторону точки С , ось Z в сторону точки А1. тогда координаты интересующих нас точек будут : А(0;0;0) А1(0;0;1) С(0;√3;0) В1(-0.5;√3/2;1) уравнение плоскости А1В1С ax+by+cz+d=0 подставим в него координаты точек А1 С и В1
с+d=0 √3b+d=0 -0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3 нормализованное уравнение плоскости . к= √(1/3+1/3+1)=√(5/3) -1/√5x-1/√5y-√(3/5)z+√(3/5)=0 подставим координаты точки А(0;0;0) в нормализованное уравнение l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.
Пусть нам дан ромб АВСD. Пусть угол С=120. В ромбе противоположные углы равны, значит угол А = 120. Углы В и Д равны 360-240= 120. каждый из них равен по 60 градусов. В ромбе диагонали являются биссектрисами углов и пересекаются под прямым углом. Значит угол ОВС = 60/2 =30 Пусть О -точка пересечения диагоналей. Треугольник ВОС - прямоугольный. гипотенуза ВС = 8 см (по условию). ОС - катет лежащий против угла в 30 градусов, значит равен половине гипотенузы = 4 см. по теореме пифагора находим, что ВО = 4√3. АО =ОС, т.к. АС диагональ. Треугольник АВО -прямоугольный. По теореме Пифагора находим гипотенузу АВ = 8 см. Т.к. в ромбе противоположные стороны равны, то Р= 8*4= 32 см. Ну, как то так
900√3см^2
Объяснение: