Если внешний угол равен 30 градусов, то, учитывая, что сумма всех внешних углов равна 360 градусов, получим: 360 : 30 = 12. Значит этот многоугольник - правильный двенадцатиугольник.Если диаметр окружности 8 см, то радиус равен 4 см. Если провести радиусы, то двенадцатиугольник разбивается на 12 равных равнобедренных треугольников с боковыми сторонами 4 см и углом при вершине равным 360 :12 = 30 градусов.Площадь одного такого треугольника равна 1/2* 4*4*sin 30 = 4 кв. см Тогда площадь всего двенадцатиугольника равна 4 * 12 = 48 кв.см ответ. 48 кв.см
1. а) Так как две боковые грани перпендикулярны плоскости основания, то и ребро, по которому они пересекаются, МС, так же перпендикулярно плоскости основания. Пусть Н - середина гипотенузы АВ. Тогда СН - медиана и высота равнобедренного треугольника, СН⊥АВ. СН - проекция МН на плоскость основания, тогда и МН⊥АВ по теореме о трех перпендикулярах. ∠МНС = 45° - линейный угол двугранного угла между боковой гранью МАВ и плоскостью основания. СН = АВ/2 = 2√2 см, так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине. ΔМСН прямоугольный равнобедренный (∠МНС = 45°), значит МС = СН = 2√2 см
АВ = АС√2 как гипотенуза равнобедренного треугольника, АС = ВС = АВ/√2 = 4 см ΔМСА: ∠МСА = 90°, по теореме Пифагора МА = √(МС² + АС²) = √(8 + 16) = √24 = 2√6 см ΔМСА = ΔМСВ по двум катетам (АС = ВС по условию, МС - общий), ⇒ МВ = МА = 2√6 см
2. Пусть М - середина AD. Соединим точки М и С, так как они лежат в одной грани. МС - отрезок сечения. Проведем МК - среднюю линию ΔАА₁D. Тогда МК║А₁D. МК - отрезок сечения. Параллельные грани пересекаются по параллельным прямым, поэтому в грани ВВ₁С₁С проведем диагональ В₁С, которая параллельна А₁D, а значит и МК. В₁СМК - искомое сечение (А₁D║МК, значит параллельна и плоскости сечения, и сечение проходит через заданные точки).
Так как МК║В₁С, а КВ₁∦МС, то сечение - трапеция. Так как ΔКА₁В₁ = ΔMDC по двум катетам, то КВ₁ = МС, ⇒ трапеция равнобедренная. В₁С = а√2 как диагональ квадрата, МК = а√2/2 как средняя линия ΔАА₁D. Из ΔMDC по теореме Пифагора МС = √(MD² + DC²) = √(a²/4 + a²) = a√5/2 Трапеция равнобедренная, поэтому СН = РВ₁ = (СВ₁ - МК)/2 = (а√2 - а√2/2)/2 = а√2/4 Из треугольника СМН по теореме Пифагора СН = √(СМ² - СН²) = √(5a²/4 - 2a²/16) = √(18a²/16) = 3a√2/4 Sсеч = (CB₁ + MK)/2 · CH = (a√2 + a√2/2)/2 · 3a√2/4 = 3a√2/4 · 3a√2/4 Sсеч = 9a² · 2 / 16 = 9a²/8
Если внешний угол равен 30 градусов, то, учитывая, что сумма всех внешних углов равна 360 градусов, получим: 360 : 30 = 12. Значит этот многоугольник - правильный двенадцатиугольник.Если диаметр окружности 8 см, то радиус равен 4 см.
Если провести радиусы, то двенадцатиугольник разбивается на 12 равных равнобедренных треугольников с боковыми сторонами 4 см и углом при вершине равным 360 :12 = 30 градусов.Площадь одного такого треугольника равна 1/2* 4*4*sin 30 = 4 кв. см
Тогда площадь всего двенадцатиугольника равна 4 * 12 = 48 кв.см
ответ. 48 кв.см