Высота равноб треуг делит свое основание пополам, следовательно ад=дс=12:2=6 см. находим гипотенузу вс и ва: 8 в кв.+6 в кв.= вс в кв. 64+36=100 - вс в кв. вс = ав = 10 см 10+10+12=32 см - Р треуг авс
Sромба=1/2 * d1 * d2, где d1,d2 - диагонали ромба. Диагонали относятся как 5 : 12 - это означает, что d1=АС=5х, d2=ВD=12х ⇒ 480=1/2*5х*12х ⇒ 480=1/2*60х² ⇒ 480=30х² ⇒ х²=16 ⇒ х=4 и х= -4 (игнорируем, т.к. сторона не может иметь отрицательное значение) ⇒ d1=АС=5*4=20, d2=ВD=12*4=48 Диагонали ромба пересекаются под углом=90° и точкой пересечения О делятся пополам ⇒ стороны прямоугольного ΔАОВ будут равны: АО=10 и ВО=24. По теореме Пифагора находим сторону ромба: АВ²=АО²+ВО²=10²+24²=100+576=676 ⇒АВ=26 Тогда Р ромба = 4*АВ = 4* 26 = 104. ответ: 104 см
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
треуг ABC
высота BD=8
основание 12 (основание AC)
решение:
в равнобедренном треуг. боковые равны, а высота перпендикулярна основанию. по теореме пифагора находим боковые.
6^{2}+ 8^{2}= \sqrt{AB=BC}= \sqrt{100}=10
следовательно 10+10+12=32
збс