Перпендикуляр АВ до прямої а. Два промені з початком А перетинають пряму ауточках Ci D, причому AC = AD. Знайдіть CAB, ACB і ADB, якщо DAB дорівнює 15°.
Рассмотрим произвольный треугольник ABC и обозначим буквой О точку пересечение его биссектрис. Проведём из точки О перпендикуляры ОК, OL и ОМ соответственно к сторонам АВ, ВС и СА. так как точка О равноудалена от сторон треугольника АВС., то ОК= OL=Ov. Поэтому окружность с центром О радиуса ОК проходит через точки К L и М Стороны треугольника АВС касаются этой окружности в точках К L М так как они перпендикулярны к радиусам ОК OL и ОМ.Значит, окружность с центром О радиуса Ок является вписанной в треугольник АВС. Теорема доказана.
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат