Для параллелограмма есть формула b²-а²=D*d*cos α где b и а- большая и меньшая стороны, D и d - большая и меньшая диагонали, α - угол между диагоналями. Подставим известные величины: 36-16= D*d*cos 45º D*d*cos45º =20 Одна из формул площади параллелограмма S=Dd* sinα:2 Синус и косинус 45º равны⇒ D*d*sin45º =20 S =Dd* sin45º:2=20:2=10(ед. площади) --------- Данная выше формула выводится из т.косинусов. ------- Обозначим для удобства большую сторону ВС параллелограмма b, меньшую СD- а, угол COD-α Рассмотрим треугольник ВОС Угол ВОС тупой и его косинус отрицательный. По т.косинусов из ∆ ВОС ВС²==ВО²+СО² -2ВО*СО*(-cosα) b²= (d/2)²+(D/2)² + 2(d/2)*D/2*cos α Из треугольника СОD по т.косинусов а²=(d/2)²+(D/2)² - 2(d/2)*D/2*cos α Вычтем из первого уравнения второе: b²-а²= (d/2)²+(D/2)² + 2(d/2)*D/2*cos α - (d/2)² - (D/2)² + 2(d/2)*D/2*cos α b²-а²= 4(d/2)*D/2*cosα=4Dd/4)*cos α b²-а²=D*d*cos α
AK , A₁D₁ ⊂ (ADD₁)
Найдём пересечение этих прямых: AK ∩ A₁D₁ = K₁
BK , B₁D₁ ⊂ (BDD₁)
Найдём пересечение этих прямых: BK ∩ B₁D₁ = K₂
K₁ ∈ AK ⊂ (ABK); K₂ ∈ BK ⊂ (ABK) ⇒ K₁K₂ ⊂ (ABK).
K₁ ∈ A₁D₁ ⊂ (B₁C₁D₁); K₂ ∈ B₁D₁ ⊂ (B₁C₁D₁) ⇒ K₁K₂ ⊂ (B₁C₁D₁);
K₁K₂ , B₁C₁ ⊂ (B₁C₁D₁)
Найдём пересечение этих прямых: K₁K₂ ∩ B₁C₁ = M₁
M₁ ∈ B₁C₁ ⊂ (BCC₁); B ∈ (BCC₁) проведём прямую через две точки, лежащие в одной плоскости с ребром CC₁
Получаем, что BM₁ ∩ CC₁ = M.
M₁ ∈ K₁K₂ ⊂ (ABK); B ∈ (ABK) ⇒ BM₁ ⊂ (ABK); M ∈ M₁B ⊂ (ABK) ⇒ M ∈ (ABK).
ABMK - нужное, четырёхугольное, сечение.