так как высоты падают на стороны параллелограмма под углами 90 градусов, то находим угол в образовавшемся четырехугольнике (2 высоты и части сторон): 360 - 90-90-30=150 градусов - один из углов параллелограмма, а таких углов в параллелограмме два- противолежащих. Найдем два других: 360-150-150=60 градусов два других угла, а один угол будет равен 30 градусов. Напротив этих 30 градусов лежат высоты 3 и 5, которые являются катетами в прямоугольном треугольнике, а гипотенуза будет равна двум катетам (по свойству: против угла в 30 градусов лежит катет равный половине гипотенузы). Значит одна из сторон равна 6, а другая по аналогии равна 10, следовательно периметр параллелограмма равен 2*(10+6)=32
Объяснение:
Координаты середины отрезка
Расстояние между точками
А(-4;-4), B(-4;2), C(4;2), D(8;-4)
MN - средняя линия трапеции.
M - середина AB
M( (-4+(-4))/2 ; (-4+2)/2 ) = M(-4;-1)
N - середина CD
N( (4+8)/2 ; (2+(-4))/2 ) = N(6;-1)
|MN|= √( (6-(-4))^2 + (-1-(-1))^2 ) =√(100+0) =10
Точки A и D имеют равные координаты по оси Y => AD||X'X (отрезок AD параллелен оси X)
Аналогично BC.
Основания параллельны оси X.
Точки A и B имеют равные координаты по оси X => AB⊥X'X (отрезок AB перпендикулярен оси X)
AB - высота трапеции.
|AB|= √( (-4-(-4))^2 + (2-(-4))^2 ) =√(0+36) =6
S(ABCD) =MN*AB =10*6 =60