решить контрольную по геометрии, хотя бы 4 задания! 1) В треугольнике угол C прямой, BC = 3 см и AC = 4 см. угол А = α. Найдите значения sin α, cos α, tg α. 2) Медианы треугольника ABC пересекаются в точке O. Через точку O проведена прямая, параллельная стороне AC и пересекающая стороны AB и BC в точках Е и F соответственно. Найдите длину EF, если сторона AC равна 15 см. 3) Стороны параллелограмма равны 4 см и 5 см, угол между ними 45°. Найдите высоты параллелограмма. 4) Основание равнобедренного треугольника равно 12 см, а высота, проведённая к основанию, - 8 см. Найдите синус, косинус, тангенс и котангенс угла при основании треугольника. 5) Высота BD треугольника ABC делит сторону AC на отрезки AD и CD, AB = 12 см, ∠A = 60°, ∠СBD = 30°. Найдите отрезок CD.
1) Вначале надо найти уравнение прямой, проходящей через центр окружности и перпендикулярной заданной прямой 6x+8y-1=0. Уравнение 6x+8y-1=0 преобразуем: у = (-6/8)х + (1/8) или у = (-3/4)х + (1/8). Уравнение перпендикулярной прямой имеет вид у = (-1/к)*х + в. у = (4/3)х + в. Для определения коэффициента в подставим координаты точки О: -1 = (4/3)*1 + в, в = -1 - (4/3) = -7/3. Получаем уравнение у = (4/3)х - (7/3).
2) Находим точки пересечения окружности и перпендикулярной прямой. Для этого решаем систему уравнений: (х-1)²+(у+1)² = 4, у = (4/3)х - (7/3). Используя подстановки, получаем 2 точки касания: А(-0,2; -2,6) и В(2,2; 0,6) или А((-1/5); (-13/5)) и В((11/5); (3/5)).
3) Находим уравнения прямых, проходящих через найденные точки параллельно заданной прямой 6x+8y-1=0 или у = (-3/4)х + (1/8). У этих параллельных прямых коэффициенты перед х равны (-3/4), а коэффициенты в находим подстановкой координат точек касания А и В. -13/5= (-3/4)*(-1/5) + в, в = (-13/5) - (3/20) = -55/20 = -11/4. Получаем уравнение первой прямой: у = (-3/4)х - (11/4).
3/5 = (-3/4)*(11/5) + в, в = (3/5) + (33/20) = 45/20 = 9/4. Получаем уравнение второй прямой: у = (-3/4)х + (9/4).
Расчет длин сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈ 5.656854249, BC = √((Хc-Хв)²+(Ус-Ув)²) = √128 ≈11.3137085, AC = √((Хc-Хa)²+(Ус-Уa)²) = √160 ≈12.64911064. Отсюда видим, что треугольник прямоугольный - сумма квадратов двух сторон (32+128=160) равна квадрату третьей стороны (160).
Точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, - это центр описанной окружности.
В прямоугольном треугольнике центр описанной окружности находится на середине гипотенузы. У нас это АС. Находим координаты точки О как середины отрезка АС: О((-4+8)/2=2; (3-1)/2=1) = (2; 1).
ответ: точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, имеет координаты (2; 1).
p.s. В общем случае надо было находить уравнения срединных перпендикуляров (достаточно двух), затем найти точку их пересечения.
Уравнение 6x+8y-1=0 преобразуем:
у = (-6/8)х + (1/8) или у = (-3/4)х + (1/8).
Уравнение перпендикулярной прямой имеет вид у = (-1/к)*х + в.
у = (4/3)х + в.
Для определения коэффициента в подставим координаты точки О:
-1 = (4/3)*1 + в,
в = -1 - (4/3) = -7/3.
Получаем уравнение у = (4/3)х - (7/3).
2) Находим точки пересечения окружности и перпендикулярной прямой.
Для этого решаем систему уравнений:
(х-1)²+(у+1)² = 4,
у = (4/3)х - (7/3).
Используя подстановки, получаем 2 точки касания:
А(-0,2; -2,6) и В(2,2; 0,6) или А((-1/5); (-13/5)) и В((11/5); (3/5)).
3) Находим уравнения прямых, проходящих через найденные точки параллельно заданной прямой 6x+8y-1=0 или у = (-3/4)х + (1/8).
У этих параллельных прямых коэффициенты перед х равны (-3/4), а коэффициенты в находим подстановкой координат точек касания А и В.
-13/5= (-3/4)*(-1/5) + в,
в = (-13/5) - (3/20) = -55/20 = -11/4.
Получаем уравнение первой прямой: у = (-3/4)х - (11/4).
3/5 = (-3/4)*(11/5) + в,
в = (3/5) + (33/20) = 45/20 = 9/4.
Получаем уравнение второй прямой: у = (-3/4)х + (9/4).