18.
∪ ALB = 72° => <AOB = 72° =>
x = 90-<AOB = 18°.
20.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
<OAC = 90° => <OAB = <OAC - <BAC => <OAB = 90-40 = 50°
OB == OA => <OAB == <OBA = 50°
<BOA = 180-(50+50) = 80°.
А в 22-ом я пока путаюсь, решу немного позже(сложновато для меня), прости.
2. Данная фигура - прямоугольник, сл-но противоположные стороны равны. Значит, CDE = CME, так как треугольники прямоугольные и общая гипотенуза и равные катеты (здесь можно любые пары взять).
3. Как я думаю, BD - высота, медиана, сл-но и биссектриса, и значит, что треугольник большой р/б. Снова по общей стороне и равным катетам.
4. Две пары равных углов (показаны на рисунке) и общая сторона. Признак: по двум углам и стороне.
5. (Прости, тут даже непонятно, что за треугольники).
6. AKD равен ELC, так как KD = LE и KA = LC
7. AMB равен BNC так как треугольники прямоугольные и AB = BC и угол MBA равен NBC (так как вертикальные).
8. Вроде как два те маленьких треугольника прямоугольные и есть две пары равных сторон.