Злиста фанери ,який має форму прямокутного трикутника з катетами 60 см і 80 см, потрібно ви пиляти круг з найбільшою площею. яким має бути радіус цього круга?
Приближается Новый год. 2012 год по восточному календарю — год дракона. В связи с этим моя давняя хорошая подруга и однокурсница преложила написать об этом фрактале — кривой дракона.
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем
Медиана делит сторону, к которой она проведена, на два равных отрезка, также она является высотой т.е мы получаем два равных прямоугольных треугольника. Стороны равностороннего треугольника обозначим обозначим за Х Теперь рассмотрим один из прямоугольных треугольников: гипотенуза равна Х катет1 равен х/2(это половина стороны,к которой проведена высота) катет2 равен медиане по т пифагора найдем гипотенузу(х) х^2=(x/2)^2+(12 корней из 3)^2 x^2=432+x^2/4 (умножаем все на 4) 4x^2=1728+x^2 4x^2-x^2=1728 3x^2=1728 x^2=1728/3 x^2=576 х=корень из 576 х=24
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем